Конечных разностей исчисление - Definition. Was ist Конечных разностей исчисление
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Конечных разностей исчисление - definition

Конечная разность; Исчисление конечных разностей; Конечных разностей исчисление

КОНЕЧНЫХ РАЗНОСТЕЙ ИСЧИСЛЕНИЕ         
раздел математики, в котором изучаются функции при дискретном (прерывном) изменении аргумента, в отличие от дифференциального исчисления и интегрального исчисления, где аргумент предполагается непрерывно изменяющимся.
Конечных разностей исчисление         

раздел математики, в котором изучаются функции при дискретном (прерывном) изменении аргумента, в отличие от дифференциального исчисления (См. Дифференциальное исчисление) и интегрального исчисления (См. Интегральное исчисление), где аргумент предполагается непрерывно изменяющимся. Конечными разностями "вперёд" для последовательности значений y1= f (x1), y2 = f (x2),..., yk = f (xk),... функции f (x), соответствующих последовательности значений аргумента x0,..., xk,,... (xk = х0 + kh, h - постоянное, k - целое), называют выражения:

ΔykΔf (xk) = f (xk+1) - f (xk)

(разности 1-го порядка),

Δ2ykΔ2f (xk) = Δf (xk+1)- Δf (xk) = f (xk+2)-2f (xk+1) + f (xk)

(разности 2-го порядка),

ΔnykΔnf (xk) = Δn-1f (xk+1) - Δn-1f (xk)

(разности n-го порядка).

Соответственно, конечные разности "назад" Δnyк определяются равенствами

Δnyк = Δnyк + n.

При интерполяции (См. Интерполяция) часто пользуются т. н. центральными разностями δny, которые вычисляются при нечётном n в точках х = xi+1l2h, а при чётном n в точках х = xi по формулам

δf (xi + 1/2h) ≡ δyi+1/2 = f (xi+1) - f (xi),

δ2f (xi) ≡ δ2yi = δyi+1/2,

δ2m-1f (xi + 1/2h) ≡ δ2т-1yi+1/2 = δ2т-2yi+12т-2yi,

δ2mf (xi) ≡ δуi = δ2т-1yi+1/2 - δ2т-1yi-1/2

Они дополняются средними арифметическими

,

,

где m = 1,2,...; если m = 0, то полагают

.

Центральные разности δny связаны с конечными разностями Δny соотношениями

δуi = Δуi-m,

δ2т+1yi+1/2 = Δ2m+1yi-m

Если значения аргумента не составляют арифметической прогрессии, т. е. xk+1 - xk не есть тождественно постоянная, то вместо конечных разностей пользуются разделёнными разностями, последовательно определяемыми по формулам

........................................................

.

Связь между конечными разностями и производными устанавливается формулой Δnyk = f (n)(), где xk≤xk+n. Существует полная аналогия между ролью конечных разностей в теории функций дискретного аргумента и ролью производных в теории функций непрерывного аргумента; конечные разности являются удобным аппаратом при построении ряда разделов численного анализа: интерполирование функций, численное дифференцирование и интегрирование, численные методы решения дифференциальных уравнений.

Например, для приближённого решения (См. Приближённое решение)дифференциального уравнения (обыкновенного или с частными производными) часто заменяют входящие в него производные соответствующими разностями, деленными на степени разностей аргументов, и решают полученное таким способом разностное уравнение (одномерное или многомерное).

Важный раздел К. р. и. посвящен решению разностных уравнений вида

F [x,(f (x),...,Δnf (x)] = 0 (1)

задаче, во многом сходной с решением дифференциальных уравнений n-го порядка. Обычно уравнение (1) записывают в виде

Ф [х, f (x), f (x1),..., f (xn)] = 0,

выражая разности через соответствующие значения функции. Особенно простой случай представляет линейное однородное уравнение с постоянными коэффициентами:

f (x+n) + a1f (x+n-1) +... + anf (x) = 0,

где a1,..., an - постоянные числа. Чтобы решить такое уравнение, находят корни λ1, λ2,... λn его характеристического уравнения

λn + a1λn-1+...+an = 0.

Тогда общее решение данного уравнения представится в виде

f (x) = С1λ1х + C2λ2x +... + Cnλnx,

где C1, C2,..., Cn - произвольные постоянные (здесь предполагается, что среди чисел λ1, λ2,..., λn нет равных).

Лит.: Березин И. С., Жидков Н. П., Методы вычислений, 3 изд., т. 1-2, М., 1966; Гельфонд А. О., Исчисление конечных разностей, 3 изд., М., 1967.

Под редакцией Н. С. Бахвалова.

КОНЕЧНЫЕ РАЗНОСТИ         
Исчисление конечных разностей связано с изучением свойств и применений разностей между соседними членами какой-нибудь последовательности или между значениями функции в точках, расположенных с постоянным интервалом в некотором пространстве. Слово "конечные" используется здесь в несколько устаревшем смысле "не бесконечно малые", т.е. не связанные с предельными переходами. Поскольку дифференциальное исчисление занимается изучением пределов разностей, а исчисление конечных разностей - самими разностями, то естественно, что между этими двумя теориями существуют много параллелей. Исчисления конечных разностей используются при интерполяции в математических таблицах, при суммировании числовых рядов, при вычислении интегралов и дифференцировании функций. Разности встречаются также в любой ситуации, когда надо описать поведение объекта, который испытывает воздействие меняющихся условий на определенном расстоянии (во времени и в пространстве). Например, термостату требуется значительное время, чтобы отреагировать на изменение температуры, поэтому он реагирует не на текущую температуру, а на ту, что была минуту назад. Другой пример: автомашиной управляет водитель, которому требуется какое-то время, чтобы отреагировать на возникшую на дороге ситуацию.
Под конечной разностью первого порядка функции f (x) принято понимать величину
где d - некоторая постоянная, которую часто, но не всегда, принимают равной 1. Разность второго порядка обозначается ?2f и представляет собой разность разностей, т.е.
Продолжив этот процесс, мы получим разности более высоких порядков ?3f (x), ?4f (x), ??.
Данные выше определения можно также применить к членам любых последовательностей величин, например, к последовательности
3, 6, 11, 18, 27, 38, ??
Первые разности равны
6 - 3, 11 - 6, 18 - 11, 27 - 18, 38 - 27, ?,
т.е.
3, 5, 7, 9, 11, ?;
разности второго порядка постоянны и равны 2.
В общем виде такие последовательности можно записать как
где разности первого, второго и т.д. порядков определяются выражениями
а n может принимать любое допустимое для индекса значение.
В некоторых приложениях используются последовательности вида
где индексы могут принимать любые убывающие значения. В этом случае вместо символа . используется символ "разделенной разности". Разделенные разности первого и второго порядков определяются следующим образом:
Помимо уже названных выше приложений, исчисление конечных разностей используется в страховании, теории вероятностей и статистике. В последние годы с изобретением быстродействующих компьютеров конечные разности стали все более широко применяться при решении дифференциальных уравнений, обыкновенных и в частных производных, многие из которых ранее было невозможно решить другими математическими методами.
У истоков теории. Хотя исследование свойств и использование конечных разностей приходится на современный период развития математики, Птолемей (ок. 150 н.э.) ввел в Альмагесте таблицу разностей первого порядка, чтобы облегчить расчеты в таблице длин хорд. Разности второго порядка использовал при вычислении своих таблиц логарифмов в 1624 Г.Бриггс. Теория интерполяции берет начало со знаменитой пятой леммы из 3-й книги Математических начал (1687) И.Ньютона, в которой впервые была приведена формула, носящая ныне его имя. Частный случай формулы Ньютона, открытый также независимо его современником Дж.Грегори (1638-1675), приведен ниже (см. формулу (7)). В общей формуле интерполяции Ньютона использовались разделенные разности, хотя этот термин, по-видимому, был введен О.де Морганом (1806-1871) в 1848. Первое применение исчисления конечных разностей к задачам теории вероятностей принято связывать с именами П.де Монтмора (1678-1719) и А.де Муавра (1667-1754).
Хотя Л.Эйлер (1707-1783) в своих работах по дифференциальному исчислению использовал предельные переходы в конечных разностях, основания современной теории конечных разностей были заложены в основном Ж.Лагранжем (1736-1813) и П.Лапласом (1749-1827). Первый из них ввел в исчисление конечных разностей символические методы, второй сделал конечные разности главным инструментом в своей Аналитической теории вероятностей (1812).
Под влиянием этих работ математики 19 в. принялись интенсивно разрабатывать предмет, и в 1860 Дж.Буль выпустил свой классический Трактат об исчислении конечных разностей. С тех пор это исчисление и круг его приложений существенно расширились. Одно из наиболее важных приложений конечные разности нашли в статистике. Особенно полезными они оказались в теории сериальной корреляции, в анализе случайных последовательностей и статистических временных рядов.

Wikipedia

Конечные разности

Конечная разность — математический термин, широко применяющийся в методах вычисления при интерполировании и численном дифференцировании.

Was ist КОНЕЧНЫХ РАЗНОСТЕЙ ИСЧИСЛЕНИЕ - Definition